Nikolay Kudrin

[Latest Version]

□ +1 (760) 547-4818 • 🖂 nkudrin@ucsd.edu • 🚱 nvkudrin.github.io

 Placement Director: 	Jim Andreoni	(858) 952-6183	andreoni@ucsd.edu
 Placement Coordinator: 	Andrew Flores	(858) 534-1867	aflores@ucsd.edu

Education

University of California, San DiegoLa Jolla, CaliforniaPhD Candidate in Economics2023 (expected)Committee: Graham Elliott (chair), Kaspar Wüthrich, Yixiao Sun, Alexis Akira Toda, Ery Arias-Castro2023 (expected)New Economic SchoolMoscow, RussiaMaster of Arts in Economics2015Specializations: Data Analysis, Finance, Advanced Macroeconomics2015Higher School of EconomicsNizhny Novgorod, RussiaBachelor of Science in Economics (magna cum laude)2013

References

Graham Elliott (Chair) UC San Diego grelliott@ucsd.edu (858) 534-4481 Yixiao Sun UC San Diego yisun@ucsd.edu (858) 534-4692 Kaspar Wüthrich UC San Diego kwuthrich@ucsd.edu (858) 534-3383

Fields of Interest

Econometrics, Meta-analysis, Research Transparency

Mathematical Methods in Economics, Econometrics

Research

Publications

o "Detecting *p*-hacking" (with G. Elliott and K. Wüthrich), *Econometrica*, 2022.

Abstract: We theoretically analyze the problem of testing for *p*-hacking based on distributions of *p*-values across multiple studies. We provide general results for when such distributions have testable restrictions (are non-increasing) under the null of no *p*-hacking. We find novel additional testable restrictions for *p*-values based on *t*-tests. Specifically, the shape of the power functions results in both complete monotonicity as well as bounds on the distribution of *p*-values. These testable restrictions result in more powerful tests for the null hypothesis of no *p*-hacking. When there is also publication bias, our tests are joint tests for *p*-hacking and publication bias. A reanalysis of two prominent datasets shows the usefulness of our new tests.

Working papers

o "Robust Caliper Tests" (Job Market Paper)

Abstract: Caliper tests are widely used to test for the presence of p-hacking and publication bias based on the distribution of the z-statistics across studies. We show that without additional restrictions on the distribution of true effects, Caliper tests may suffer from substantial size distortions. We propose a modification of the existing Caliper test, referred to as the Robust Caliper test, which is shown to control size irrespective of the true effect distribution. We also propose a way of correcting the regression-based version of the Caliper test

that allows for the inclusion of additional covariates. The proposed tests are easy to implement and perform well in practice.

o "(When) Can We Detect p-hacking?" (with G. Elliott and K. Wüthrich)

Abstract: *p*-Hacking can undermine the validity of empirical studies. A flourishing empirical literature investigates the prevalence of *p*-hacking based on the empirical distribution of reported *p*-values across studies. Interpreting results in this literature requires a careful understanding of the power of methods used to detect different types of *p*-hacking. We theoretically study the implications of likely forms of *p*-hacking on the distribution of reported *p*-values and the power of existing methods for detecting it. Power can be quite low, depending crucially on the particular *p*-hacking strategy and the distribution of actual effects tested by the studies. We relate the power of the tests to the costs of *p*-hacking and show that power tends to be larger when *p*-hacking is very costly. Monte Carlo simulations support our theoretical results.

Work in Progress

- o "Nonparametric Estimation of Publication Bias"
- o "Uniform inference in binary response models with endogeneity"

Teaching Experience

University of California San Diego La Jolla, California Instructor 2016 to present CSS 1 (Introductory Programming for Computational Social Science) 2016 to present Econ 280 (Computation) 2016 to present

Teaching Assistant Graduate: Econ 220B (Econometrics) and Econ 280 (Computation). Undergraduate: Principles of Microeconomics, Undergraduate Econometrics/Macroeconomics/Microeconomics

New Economic School

Teaching Assistant Core Graduate Econometrics, Empirics of Financial Markets, Topics in Econometrics, Applied Microeconometrics, Applied Time Series Econometrics, Macroeconometrics

International College of Economics and Finance

Class Teacher Elements of Statistics

Higher School of Economics

Teaching Assistant Probability & Mathematical Statistics, Econometrics

Professional Activities

Referee service: Journal of Economic Behavior and Organization

Awards

Clive Granger Research Fellowship (2021) Zhao Family Econometrics Summer Fellowship (2020) UCSD Graduate Summer Research Fellowship (2017, 2018) UCSD Regents Fellowship (2016) Moscow, Russia 2014–2016

Moscow, Russia 2015–2016

Nizhny Novgorod, Russia 2012–2013

2/3

Other Information

Languages: English (fluent), Russian (native) Computer skills: MATLAB, Python, R, Stata, MS Office, LATEX